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Installation

In this section we demonstrate how to prepare an environment with PyTorch.


	Installation


	Requirements


	Install openmixup


	Customized installation


	Prepare datasets


	A from-scratch setup script


	Common Issues









Requirements


	Linux (Windows is not officially supported)


	Python 3.6+


	PyTorch 1.8 or higher


	CUDA 10.1 or higher


	NCCL 2


	GCC 4.9 or higher


	mmcv-full [https://github.com/open-mmlab/mmcv] 1.4.7 or higher (use mmcv for fast installation)




We have tested the following versions of OS and softwares:


	OS: Ubuntu 16.04/18.04 and CentOS 7.2


	CUDA: 10.0/10.1/11.0/11.2


	NCCL: 2.1.15/2.2.13/2.3.7/2.4.2 (PyTorch-1.1 w/ NCCL-2.4.2 has a deadlock bug, see here [https://github.com/open-mmlab/OpenSelfSup/issues/6])


	GCC(G++): 4.9/5.3/5.4/7.3/7.4/7.5







Install openmixup

We recommend that users follow our best practices to install OpenMixup.

Step 0. Create a conda virtual environment and activate it.

conda create -n openmixup python=3.8 -y
conda activate openmixup





Step 1. Install PyTorch and torchvision following the official instructions [https://pytorch.org/], e.g., on GPU platforms:

conda install pytorch torchvision torchaudio cudatoolkit=10.1 -c pytorch
# assuming CUDA=10.1, "pip install torch==1.8.1+cu101 torchvision==0.9.1+cu101 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html"





Step 2. Install MMCV [https://github.com/open-mmlab/mmcv] using MIM [https://github.com/open-mmlab/mim]. We recommend the users to install mmcv-full from the source using MIM (or it will install from the source with pip in step 4). You can also use pip install mmcv for fast installation.

pip install -U openmim
mim install mmcv-full





Step 3. Install other third-party libraries (not necessary). Please install pyGCO [https://github.com/Borda/pyGCO] for PuzzleMix (used for cut_grid_graph, DON’T USE pip install gco==1.0.1).

conda install faiss-gpu cudatoolkit=10.1 -c pytorch  # optional for DeepCluster and ODC, assuming CUDA=10.1
pip install opencv-contrib-python  # optional for SaliencyMix (cv2.saliency.StaticSaliencyFineGrained_create())





Step 4. Install OpenMixup. To develop and run openmixup directly, install it from the source:

git clone https://github.com/Westlake-AI/openmixup.git
cd openmixup
pip install -v -e .
# "-v" means verbose, and "-e" means installing in editable mode;
# or "python setup.py develop"





Step 5. Install Apex (optional), following the official instructions [https://github.com/NVIDIA/apex], e.g.

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./





If some errors occur when you install Apex from the source, you can try python setup.py install for fast installation. Note that we recommend using PyTorch AMP for mixed precision training in high versions of PyTorch.

Note:


	The git commit id will be written to the version number with step d, e.g. 0.1.0+2e7045c. The version will also be saved in trained models.


	Following the above instructions, openmixup is installed on dev (editable) mode, and any local modifications made to the code will take effect immediately (except for the running experiments). You can install it to pip/conda by pip install . and the local modifications will not take effect without reinstalling it.


	If you are installing cv2 for the first time, ImportError: libGL.so.1 will occur, which can be solved by apt install libgl1-mesa-glx. If you would like to use opencv-python-headless instead of opencv-python, you can install it before installing MMCV. Refer to issue #48 [https://github.com/Westlake-AI/openmixup/issues/48] for some errors encountered with the version of cv2.




(back to top)




Customized installation


Benchmark

According to MMSelfSup [https://github.com/open-mmlab/mmselfsup], if you need to evaluate your pre-training model with some downstream tasks such as detection or segmentation, please also install Detectron2 [https://github.com/facebookresearch/detectron2], MMDetection [https://github.com/open-mmlab/mmdetection] and MMSegmentation [https://github.com/open-mmlab/mmsegmentation].

If you don’t run MMDetection and MMSegmentation benchmark, it is unnecessary to install them.

You can simply install MMDetection and MMSegmentation with the following command:

pip install mmdet mmsegmentation





For more details, you can check the installation page of MMDetection [https://github.com/open-mmlab/mmdetection/blob/master/docs/en/get_started.md] and MMSegmentation [https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/get_started.md].




Install MMCV without MIM

MMCV contains C++ and CUDA extensions, thus depending on PyTorch in a complex way. MIM solves such dependencies automatically and makes the installation easier. However, it is not a must. To install MMCV with pip instead of MIM, please follow MMCV installation guides [https://mmcv.readthedocs.io/en/latest/get_started/installation.html]. This requires manually specifying a find-url based on PyTorch version and its CUDA version.

For example, the following command install mmcv-full built for PyTorch 1.10.x and CUDA 11.3.

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html








Another option: Docker Image

We provide a Dockerfile to build an image.

# build an image with PyTorch 1.10.0, CUDA 11.3, CUDNN 8.
docker build -f ./docker/Dockerfile --rm -t openmixup:torch1.10.0-cuda11.3-cudnn8 .





Note: Make sure you’ve installed the nvidia-container-toolkit [https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker].






Prepare datasets

It is recommended to symlink your dataset root (assuming $YOUR_DATA_ROOT) to $OPENMIXUP/data.
If your folder structure is different, you may need to change the corresponding paths in config files.


Prepare Classification Datasets

We support following datasets: CIFAR-10/100, Tiny-ImageNet [https://www.kaggle.com/c/tiny-imagenet], ImageNet-1k [http://www.image-net.org/challenges/LSVRC/2012/], Place205 [http://places.csail.mit.edu/downloadData.html], iNaturalist2017/2018 [https://github.com/visipedia/inat_comp], CUB200 [http://www.vision.caltech.edu/visipedia/CUB-200-2011.html], FGVC-Aircrafts [https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/], StandordCars [http://ai.stanford.edu/~jkrause/cars/car_dataset.html]. Taking ImageNet for example, you need to 1) download ImageNet; 2) create the following list files or download meta files [https://github.com/Westlake-AI/openmixup/releases/download/dataset/meta.zip] under $DATA/meta/: train.txt and val.txt contains an image file name in each line, train_labeled.txt and val_labeled.txt contains filename label\n in each line; train_labeled_*percent.txt are the down-sampled lists for semi-supervised evaluation. 3) create a symlink under $OPENMIXUP/data/.




Prepare PASCAL VOC

Assuming that you usually store datasets in $YOUR_DATA_ROOT (e.g., for me, /home/xhzhan/data/).
This script will automatically download PASCAL VOC 2007 into $YOUR_DATA_ROOT, prepare the required files, create a folder data under $OPENSELFSUP and make a symlink VOCdevkit.

cd $OPENMIXUP
bash tools/prepare_data/prepare_voc07_cls.sh $YOUR_DATA_ROOT





At last, the folder with all related datasets looks like:

openmixup
├── openmixup
├── benchmarks
├── configs
├── data
│   ├── meta [used for 'ImageList' dataset]
│   ├── ade
│   ├── cifar10
│   ├── cifar100
│   │   ├── cifar-100-batches-py
│   │   ├── cifar-100-python.tar
│   │── coco
│   │── CUB200
│   ├── FGVC_Aircrafts
│   │   |   ├── images (contains all train & val)
│   ├── ImageNet
│   │   ├── train
│   │   |   ├── n01440764
│   │   |   ├── n01443537
│   │   |   ...
│   │   |   ├── n15075141
│   │   ├── val
│   │── iNaturalist2017
│   │── iNaturalist2018
│   ├── Places205
│   │   ├── images256
│   │   |   ├── a
│   │   |   |   ├── abbey
│   │   |   |   ├── airport_terminal
│   │   |   |   ...
│   │   |   ├── b
│   │   |   ...
│   │   |   ├── y
│   │── StanfordCars
│   │   ├── test
│   │   ├── train
│   │── STL10
│   │   ├── test
│   │   ├── train
│   ├── TinyImageNet
│   │   ├── train
│   │   |   ├── n01443537
│   │   |   ...
│   │   ├── val
│   │   |   ├── images (contains all train & val)
│   ├── VOCdevkit
│   │   ├── VOC2007
│   │   ├── VOC2012










A from-scratch setup script

Here is a full script for setting up openmixup with conda and link the dataset path. The script does not download full datasets, you have to prepare them on your own.

conda create -n openmixup python=3.8 -y
conda activate openmixup

conda install -c pytorch pytorch torchvision -y
git clone https://github.com/Westlake-AI/openmixup.git
cd openmixup
python setup.py develop

# download 'meta' and move to data/meta
wget https://github.com/Westlake-AI/openmixup/releases/download/dataset/meta.zip
unzip -d data/meta meta.zip
# download full classification datasets
ln -s $CIFAR10_ROOT data/cifar10
ln -s $CIFAR100_ROOT data/cifar100
ln -s $IMAGENET_ROOT data/ImageNet
ln -s $TINY_ROOT data/TinyImagenet
# download VOC datasets
bash tools/prepare_data/prepare_voc07_cls.sh $YOUR_DATA_ROOT





(back to top)




Common Issues


Using multiple openmixup versions

If there are more than one openmixup on your machine, and you want to use them alternatively, the recommended way is to create multiple conda environments and use different environments for different versions. The develop mode is recommanded if you want to add your own codes in openmixup.

Another way is to insert the following code to the main scripts (train.py, test.py or any other scripts you run)

import os.path as osp
import sys
sys.path.insert(0, osp.join(osp.dirname(osp.abspath(__file__)), '../'))





Or run the following command in the terminal of corresponding folder to temporally use the current one.

export PYTHONPATH=`pwd`:$PYTHONPATH








Issues of bugs


	PyTorch-1.8 has a bug in the AdamW optimizer, which will cause some errors in DDP training. See this issue [https://github.com/pytorch/pytorch/pull/52944].


	PyTorch-1.8 or higher has a bug in printing logs to the console. The log and log.json files are not affected.


	The training hangs / deadlocks in some intermediate iterations. See this issue [https://github.com/open-mmlab/OpenSelfSup/issues/6]. This bug is fixed in the higher versions of PyTorch>=1.6.




(back to top)
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This page provides basic tutorials about the usage of OpenMixup. For installation instructions, please see Install.


Introduction

Learning discriminative visual representation efficiently that facilitates downstream tasks is one of the fundamental problems in computer vision. Data mixing techniques largely improve the quality of deep neural networks (DNNs) in various scenarios. Since mixup techniques are used as augmentations or auxiliary tasks in a wide range of cases, this repo focuses on mixup-related methods for Supervised, Self- and Semi-Supervised Representation Learning. Thus, we name this repo OpenMixp.




Train existing methods

Note: The default learning rate in config files is for 4 or 8 GPUs. If using differnt number GPUs, the total batch size will change in proportion, you have to scale the learning rate following new_lr = old_lr * new_ngpus / old_ngpus. We recommend to use tools/dist_train.sh even with 1 gpu, since some methods do not support non-distributed training.


Train with single/multiple GPUs

bash tools/dist_train.sh ${CONFIG_FILE} ${GPUS} [optional arguments]





Optional arguments are:


	--resume_from ${CHECKPOINT_FILE}: Resume from a previous checkpoint file. Or you can use --auto_resume to resume from latest.pth automatically.


	--pretrained ${PRETRAIN_WEIGHTS}: Load pretrained weights for the backbone.


	--load_checkpoint ${CHECKPOINT_FILE}: Load the whole network from the checkpoint file.


	--deterministic: Switch on “deterministic” mode which slows down training but the results are reproducible.




An example: Run the following command to train ResNet-50 for ImageNet classification, training results (checkpoints, jsons, logs) saved in WORK_DIR=work_dirs/classification/imagenet/resnet/resnet50_rsb_a3_sz160_8xb256_ep100/.

bash tools/dist_train.sh configs/classification/imagenet/resnet/resnet50_rsb_a3_sz160_8xb256_ep100.py 8 --auto_resume





Note: During training, checkpoints and logs are saved in the same folder structure as the config file under work_dirs/. Custom work directory is not recommended since evaluation scripts infer work directories from the config file name. If you want to save your weights somewhere else, please use symlink, for example:

ln -s /lisiyuan/source/OPENMIXUP_WORKDIRS ${OPENMIXUP}/work_dirs





Alternatively, if you run OpenMixup on a cluster managed with slurm [https://slurm.schedmd.com/]:

SRUN_ARGS="${SRUN_ARGS}" bash tools/srun_train.sh ${PARTITION} ${CONFIG_FILE} ${GPUS} [optional arguments]





An example: Run the following command to train ResNet-50 for self-supervised learning.

SRUN_ARGS="-w xx.xx.xx.xx" bash tools/srun_train.sh Dummy configs/selfsup/mocov2/imagenet/r50_4xb64_cos_fp16_ep200.py 4 --resume_from work_dirs/selfsup/mocov2/imagenet/r50_4xb64_cos_fp16_ep200/latest.pth








Train with multiple machines

If you launch with multiple machines simply connected with ethernet, you have to modify tools/dist_train.sh or create a new script, please refer to PyTorch Launch utility [https://pytorch.org/docs/stable/distributed.html#launch-utility]. Usually it is slow if you do not have high speed networking like InfiniBand.

If you launch with slurm, the command is the same as that on single machine described above. You only need to change ${GPUS}, e.g., to 16 for two 8-GPU machines.




Launch multiple jobs on a single machine

If you launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs,
you need to specify different ports (29500 by default) for each job to avoid communication conflict.

If you use dist_train.sh to launch training jobs:

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 bash tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 bash tools/dist_train.sh ${CONFIG_FILE} 4





For examples, you can run the script below to train a ResNet-18 classifier on CIFAR-100 with 1 GPU:

CUDA_VISIBLE_DEVICES=0 PORT=29500 bash tools/dist_train.sh configs/classification/cifar100/mixups/basic/r18_mixups_CE_none.py 1





or you can run the script below to train a ResNet-50 classifier on ImageNet with 4 GPUs:

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 bash tools/dist_train.sh configs/classification/imagenet/resnet/resnet50_4xb64_cos_ep100.py 4





If you use launch training jobs with slurm:

GPUS_PER_NODE=4 bash tools/srun_train.sh ${PARTITION} ${CONFIG_FILE} 4 --port 29500
GPUS_PER_NODE=4 bash tools/srun_train.sh ${PARTITION} ${CONFIG_FILE} 4 --port 29501








Gradient Accumulation

If you do not have so many GPUs to launch large training jobs, we recommend the gradient accumulation. Assuming that you only have 1 GPU that can contain 64 images in a batch, while you expect the batch size to be 256, you may add the following line into your config file. It performs network update every 4 iterations. In this way, the equivalent batch size is 256. Of course, it is about 4x slower than using 4 GPUs. Note that the workaround is not applicable for methods like SimCLR which require intra-batch communication.

optimizer_config = dict(update_interval=4)








Mixed Precision Training

We support mmcv [https://github.com/open-mmlab/mmcv] and Apex [https://github.com/NVIDIA/apex] to implement Mixed Precision Training. If you want to use Mixed Precision Training, you can add below in the config file.

use_fp16 = True
fp16 = dict(type='mmcv', loss_scale='dynamic')





You can choose FP16 types in ‘apex’ or ‘mmcv’. We recommend that using ‘mmcv’ in PyTorch 1.6 or higher for faster training speed, while using ‘apex’ with lower PyTorch versions. An example of the RSB A3 setting:

bash tools/dist_train.sh configs/classification/imagenet/mixups/rsb_a3/r50/r18_rsb_a3_CE_sigm_mix0_1_cut1_0_sz160_bs2048_fp16_ep100.py 4








Speeding Up IO

1 . Prefetching data helps to speeding up IO and make better use of CUDA stream parallelization. If you want to use it, you can activate it in the config file (disabled by default) and remove ToTensor and Normalize in ‘train_pipeline’. Costly operation ToTensor is reimplemented along with prefetch.

prefetch = True
if not prefetch:
    train_pipeline.extend([dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg)])





2 . Replacing Pillow with Pillow-SIMD (https://github.com/uploadcare/pillow-simd.git) to make use of SIMD command sets with modern CPU.

pip uninstall pillow
pip install Pillow-SIMD or CC="cc -mavx2" pip install -U --force-reinstall pillow-simd if AVX2 is available.





We test it using MoCoV2 using a total batch size of 256 on Tesla V100. The training time per step is decreased to 0.17s from 0.23s.

(back to top)






Benchmarks

We provide several standard benchmarks to evaluate representation learning (supervised and self-supervised pre-trained models), and you can refer to Benchmarks for the details. The config files or scripts for evaluation mentioned are NOT recommended to be changed if you want to use this repo in your publications. We hope that all methods are under a fair comparison.




Tools and Tips


Generate fast config files

If you want to adjust some parts of a basic config file (e.g., do ablation studies or tuning hyper-parameters), we provide ConfigGenerator in the config folders of each methods. For example, you want to train {‘Mixup’, ‘CutMix’} with alpha in {0.2, 1.0} for {100, 300} epochs on ImageNet-1k based on PyTorch-style settings in configs/classification/imagenet/mixups/basic/r50_mixups_CE_none.py, you can modified auto_train_in_mixups.py and run

python configs/classification/imagenet/mixups/auto_train_in_mixups.py





It will generate eight config files and a bash file r50_mixups_CE_none_xxxx.sh. You can adjust GPUs and PORT settings and execute this bash file to run eight experiments automaticly.




Count number of parameters

python tools/count_parameters.py ${CONFIG_FILE}








Publish a model

Compute the hash of the weight file and append the hash id to the filename. The output file is the input file name with a hash suffix.

python tools/publish_model.py ${WEIGHT_FILE}





Arguments:


	WEIGHT_FILE: The extracted backbone weights extracted aforementioned.







Reproducibility

If you want to make your performance exactly reproducible, please switch on --deterministic to train the final model to be published. Note that this flag will switch off torch.backends.cudnn.benchmark and slow down the training speed.




Convenient Features


	Configure data augmentations in the config file.




The augmentations are the same as torchvision.transforms except that torchvision.transforms.RandomAppy corresponds to RandomAppliedTrans. Lighting and GaussianBlur is additionally implemented.

img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_pipeline = [
    dict(type='RandomResizedCrop', size=224),
    dict(type='RandomAppliedTrans',
        transforms=[
            dict(type='GaussianBlur', sigma_min=0.1, sigma_max=2.0, kernel_size=23)],
        p=0.5),
    dict(type='ToTensor'),
    dict(type='Normalize', **img_norm_cfg)
]






	Parameter-wise optimization parameters.




You may specify optimization paramters including lr, momentum and weight_decay for a certain group of paramters in the config file with paramwise_options. paramwise_options is a dict whose key is regular expressions and value is options. Options include 6 fields: lr, lr_mult, momentum, momentum_mult, weight_decay, weight_decay_mult, lars_exclude (only works with LARS optimizer).

# this config sets all normalization layers in CNN with weight_decay_mult=0.1,
# and the `head` with `lr_mult=10, momentum=0`.
paramwise_options = {
    '(bn|gn)(\d+)?.(weight|bias)': dict(weight_decay_mult=0.1),
    '\Ahead.': dict(lr_mult=10, momentum=0)}
optimizer_cfg = dict(type='SGD', lr=0.01, momentum=0.9,
                     weight_decay=0.0001,
                     paramwise_options=paramwise_options)






	Configure custom hooks in the config file.




The hooks will be called in order. For hook design, please refer to momentum_hook.py [https://github.com/Westlake-AI/openmixup/blob/main/openmixup/hooks/momentum_hook.py] as an example.

custom_hooks = [
    dict(type='SAVEHook', ...),
    dict(type='CosineScheduleHook', ...),
]





(back to top)
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Tutorial 0: Learn about Configs

OpenMixup mainly uses python files as configs. The design of our configuration file system integrates modularity and inheritance, facilitating users to conduct various experiments. All configuration files are placed in the configs folder, which mainly contains the primitive configuration folder of _base_ and many algorithm folders such as resnet, swin_transformer, vision_transformer, etc.

If you wish to inspect the config file, you may run python tools/misc/print_config.py /PATH/TO/CONFIG to see the complete config.


	Tutorial 0: Learn about Configs


	Config File and Checkpoint Naming Convention


	Algorithm information


	Module information


	Training information


	Data information


	Config File Name Example


	Checkpoint Naming Convention






	Config File Structure


	model


	data


	training schedule


	runtime setting






	Inherit and Modify Config File


	Use intermediate variables in configs


	Ignore some fields in the base configs


	Use some fields in the base configs






	Modify config through script arguments


	Import user-defined modules


	FAQ









Config File and Checkpoint Naming Convention

We follow the below convention to name config files. Contributors are advised to follow the same style. The config file names are divided into four parts: algorithm info, module information, training information and data information. Logically, different parts are concatenated by underscores '_', and words in the same part are concatenated by dashes '-'.

{algorithm info}_{module info}_{training info}_{data info}.py






	algorithm info：algorithm information, model name and neural network architecture, such as resnet, etc.;


	module info： module information is used to represent some special neck, head and pretrain information;


	training info：Training information, some training schedule, including batch size, lr schedule, data augment and the like;


	data info：Data information, dataset name, input size and so on, such as imagenet, cifar, etc.;




For example, you can name a mixup classification algorithm config file that use puzzlemix based onresnet18 with CIFAR mixup classification training setting (CE) as follows:

r18_mixups_CE_none.py






Algorithm information

The main algorithm name and the corresponding branch architecture information. E.g：


	resnet50


	mobilenet-v3-large


	vit-small-patch32   : patch32 represents the size of the partition in ViT algorithm;


	seresnext101-32x4d  : SeResNet101 network structure, 32x4d means that groups and width_per_group are 32 and 4 respectively in Bottleneck;







Module information

Some special neck, head, pretrain and mixup methods information. In classification tasks, pretrain information is the most commonly used:


	mixups : apply mixup augmentation methods;


	in21k-pre : pre-trained on ImageNet21k;


	in21k-pre-3rd-party : pre-trained on ImageNet21k and the checkpoint is converted from a third-party repository;







Training information

Training schedule, including training type, batch size, lr schedule, data augment, special loss functions and so on:


	format {gpu x batch_per_gpu}, such as 8xb32




Training type (mainly seen in the transformer network, such as the ViT algorithm, which is usually divided into two training type: pre-training and fine-tuning):


	ft : configuration file for fine-tuning


	pt : configuration file for pretraining




Training recipe. Usually, only the part that is different from the original paper will be marked. These methods will be arranged in the order {pipeline aug}-{train aug}-{loss trick}-{scheduler}-{epochs}.


	coslr-200e : use cosine scheduler to train 200 epochs


	autoaug-mixup-lbs-coslr-50e : use autoaug, mixup, label smooth, cosine scheduler to train 50 epochs







Data information


	in1k : ImageNet1k dataset, default to use the input image size of 224x224;


	in21k : ImageNet21k dataset, also called ImageNet22k dataset, default to use the input image size of 224x224;


	in1k-384px : Indicates that the input image size is 384x384;


	cifar100







Config File Name Example

repvgg-D2se_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py






	repvgg-D2se:  Algorithm information


	repvgg: The main algorithm.


	D2se: The architecture.






	deploy: Module information, means the backbone is in the deploy state.


	4xb64-autoaug-lbs-mixup-coslr-200e: Training information.


	4xb64: Use 4 GPUs and the size of batches per GPU is 64.


	autoaug: Use AutoAugment in training pipeline.


	lbs: Use label smoothing loss.


	mixup: Use mixup training augment method.


	coslr: Use cosine learning rate scheduler.


	200e: Train the model for 200 epochs.






	in1k: Dataset information. The config is for ImageNet1k dataset and the input size is 224x224.





Note

Some configuration files currently do not follow this naming convention, and related files will be updated in the near future.






Checkpoint Naming Convention

The naming of the weight mainly includes the configuration file name, date and hash value.

{config_name}_{date}-{hash}.pth
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Config File Structure

There are four kinds of basic component file in the configs/_base_ folders, namely：


	models [https://github.com/open-mmlab/mmclassification/tree/master/configs/_base_/models]


	datasets [https://github.com/open-mmlab/mmclassification/tree/master/configs/_base_/datasets]


	schedules [https://github.com/open-mmlab/mmclassification/tree/master/configs/_base_/schedules]


	runtime [https://github.com/open-mmlab/mmclassification/blob/master/configs/_base_/default_runtime.py]




You can easily build your own training config file by inherit some base config files. And the configs that are composed by components from _base_ are called primitive.

For easy understanding, we use ResNet50 primitive config [https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb32_in1k.py] as a example and comment the meaning of each line. For more details, please refer to the API documentation.

_base_ = [
    '../_base_/models/resnet50.py',           # model
    '../_base_/datasets/imagenet_bs32.py',    # data
    '../_base_/schedules/imagenet_bs256.py',  # training schedule
    '../_base_/default_runtime.py'            # runtime setting
]





The four parts are explained separately below, and the above-mentioned ResNet50 primitive config are also used as an example.


model

The parameter "model" is a python dictionary in the configuration file, which mainly includes information such as network structure and loss function:


	type ： Classifier name, MMCls supports ImageClassifier, refer to API documentation [https://mmclassification.readthedocs.io/en/latest/api.html#module-mmcls.models.classifiers].


	backbone ： Backbone configs, refer to API documentation [https://mmclassification.readthedocs.io/en/latest/api.html#module-mmcls.models.backbones] for available options.


	neck ：Neck network name, MMCls supports GlobalAveragePooling, please refer to API documentation [https://mmclassification.readthedocs.io/en/latest/api.html#module-mmcls.models.necks].


	head: Head network name, MMCls supports single-label and multi-label classification head networks, available options refer to API documentation [https://mmclassification.readthedocs.io/en/latest/api.html#module-mmcls.models.heads].


	loss: Loss function type, supports CrossEntropyLoss, LabelSmoothLoss [https://github.com/open-mmlab/mmclassification/blob/master/configs/_base_/models/resnet50_label_smooth.py] etc., For available options, refer to API documentation [https://mmclassification.readthedocs.io/en/latest/api.html#module-mmcls.models.losses].






	train_cfg ：Training augment config, MMCls supports mixup [https://github.com/open-mmlab/mmclassification/blob/master/configs/_base_/models/resnet50_mixup.py], cutmix [https://github.com/open-mmlab/mmclassification/blob/master/configs/_base_/models/resnet50_cutmix.py] and other augments.





Note

The ‘type’ in the configuration file is not a constructed parameter, but a class name.



model = dict(
    type='ImageClassifier',     # Classifier name
    backbone=dict(
        type='ResNet',          # Backbones name
        depth=50,               # depth of backbone, ResNet has options of 18, 34, 50, 101, 152.
        num_stages=4,           # number of stages，The feature maps generated by these states are used as the input for the subsequent neck and head.
        out_indices=(3, ),      # The output index of the output feature maps.
        frozen_stages=-1,       # the stage to be frozen, '-1' means not be forzen
        style='pytorch'),        # The style of backbone, 'pytorch' means that stride 2 layers are in 3x3 conv, 'caffe' means stride 2 layers are in 1x1 convs.
    neck=dict(type='GlobalAveragePooling'),    # neck network name
    head=dict(
        type='LinearClsHead',     # linear classification head，
        num_classes=1000,         # The number of output categories, consistent with the number of categories in the dataset
        in_channels=2048,         # The number of input channels, consistent with the output channel of the neck
        loss=dict(type='CrossEntropyLoss', loss_weight=1.0), # Loss function configuration information
        topk=(1, 5),              # Evaluation index, Top-k accuracy rate, here is the accuracy rate of top1 and top5
    ))





For mixup classification tasks, here is an example for the model parameter for CIFAR based on resnet18 backbone. As shown below, you can customize your own mixup classification strategies by designating different mixup mode, arguments and backbones.

# model settings
model = dict(
    type='MixUpClassification',
    pretrained=None,
    alpha=1,
    mix_mode="mixup",
    mix_args=dict(
        alignmix=dict(eps=0.1, max_iter=100),
        attentivemix=dict(grid_size=32, top_k=None, beta=8),  # AttentiveMix+ in this repo (use pre-trained)
        automix=dict(mask_adjust=0, lam_margin=0),  # require pre-trained mixblock
        fmix=dict(decay_power=3, size=(32,32), max_soft=0., reformulate=False),
        gridmix=dict(n_holes=(2, 6), hole_aspect_ratio=1.,
            cut_area_ratio=(0.5, 1), cut_aspect_ratio=(0.5, 2)),
        manifoldmix=dict(layer=(0, 3)),
        puzzlemix=dict(transport=True, t_batch_size=None, t_size=4,  # t_size for small-scale datasets
            block_num=5, beta=1.2, gamma=0.5, eta=0.2, neigh_size=4, n_labels=3, t_eps=0.8),
        resizemix=dict(scope=(0.1, 0.8), use_alpha=True),
        samix=dict(mask_adjust=0, lam_margin=0.08),  # require pre-trained mixblock
    ),
    backbone=dict(
        # type='ResNet_CIFAR',  # CIFAR version
        type='ResNet_Mix_CIFAR',  # required by 'manifoldmix'
        depth=18,
        num_stages=4,
        out_indices=(3,),  # no conv-1, x-1: stage-x
        style='pytorch'),
    head=dict(
        type='ClsHead',  # normal CE loss (NOT SUPPORT PuzzleMix, use soft/sigm CE instead)
        loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
        with_avg_pool=True, multi_label=False, in_channels=512, num_classes=100)
)








data

The parameter "data" is a python dictionary in the configuration file, which mainly includes information to construct dataloader:


	samples_per_gpu : the BatchSize of each GPU when building the dataloader


	workers_per_gpu : the number of threads per GPU when building dataloader


	train ｜ val ｜ test : config to construct dataset


	type: Dataset name, MMCls supports ImageNet, Cifar etc., refer to API documentation [https://mmclassification.readthedocs.io/en/latest/api.html#module-mmcls.datasets]


	data_prefix : Dataset root directory


	pipeline :  Data processing pipeline, refer to related tutorial CUSTOM DATA PIPELINES [https://mmclassification.readthedocs.io/en/latest/tutorials/data_pipeline.html]








The parameter evaluation is also a dictionary, which is the configuration information of evaluation hook, mainly including evaluation interval, evaluation index, etc..

# dataset settings
dataset_type = 'ImageNet'  # dataset name，
img_norm_cfg = dict(        # Image normalization config to normalize the input images
    mean=[123.675, 116.28, 103.53],  # Mean values used to pre-training the pre-trained backbone models
    std=[58.395, 57.12, 57.375],     # Standard variance used to pre-training the pre-trained backbone models
    to_rgb=True)                     # Whether to invert the color channel, rgb2bgr or bgr2rgb.
# train data pipeline
train_pipeline = [
    dict(type='LoadImageFromFile'),                # First pipeline to load images from file path
    dict(type='RandomResizedCrop', size=224),      # RandomResizedCrop
    dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),  # Randomly flip the picture horizontally with a probability of 0.5
    dict(type='Normalize', **img_norm_cfg),        # normalization
    dict(type='ImageToTensor', keys=['img']),      # convert image from numpy into torch.Tensor
    dict(type='ToTensor', keys=['gt_label']),      # convert gt_label into torch.Tensor
    dict(type='Collect', keys=['img', 'gt_label']) # Pipeline that decides which keys in the data should be passed to the detector
]
# test data pipeline
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='Resize', size=(256, -1)),
    dict(type='CenterCrop', crop_size=224),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='ImageToTensor', keys=['img']),
    dict(type='Collect', keys=['img'])             # do not pass gt_label while testing
]
data = dict(
    samples_per_gpu=32,     # Batch size of a single GPU
    workers_per_gpu=2,      # Worker to pre-fetch data for each single GPU
    train=dict(  # Train dataset config
    train=dict(            # train data config
        type=dataset_type,                  # dataset name
        data_prefix='data/imagenet/train',  # Dataset root, when ann_file does not exist, the category information is automatically obtained from the root folder
        pipeline=train_pipeline),           # train data pipeline
    val=dict(              # val data config
        type=dataset_type,
        data_prefix='data/imagenet/val',
        ann_file='data/imagenet/meta/val.txt',   #  ann_file existes, the category information is obtained from file
        pipeline=test_pipeline),
    test=dict(             # test data config
        type=dataset_type,
        data_prefix='data/imagenet/val',
        ann_file='data/imagenet/meta/val.txt',
        pipeline=test_pipeline))
evaluation = dict(       # The config to build the evaluation hook, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/evaluation/eval_hooks.py#L7 for more details.
    interval=1,          # Evaluation interval
    metric='accuracy')   # Metrics used during evaluation








training schedule

Mainly include optimizer settings, optimizer hook settings, learning rate schedule and runner settings:


	optimizer: optimizer setting , support all optimizers in pytorch, refer to related mmcv [https://mmcv.readthedocs.io/en/latest/_modules/mmcv/runner/optimizer/default_constructor.html#DefaultOptimizerConstructor] documentation.


	optimizer_config: optimizer hook configuration file, such as setting gradient limit, refer to related mmcv [https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/optimizer.py#L8] code.


	lr_config: Learning rate scheduler, supports “CosineAnnealing”, “Step”, “Cyclic”, etc. refer to related mmcv [https://mmcv.readthedocs.io/en/latest/_modules/mmcv/runner/hooks/lr_updater.html#LrUpdaterHook] documentation for more options.


	runner: For runner, please refer to mmcv for runner [https://mmcv.readthedocs.io/en/latest/understand_mmcv/runner.html] introduction document.




# he configuration file used to build the optimizer, support all optimizers in PyTorch.
optimizer = dict(type='SGD',         # Optimizer type
                lr=0.1,              # Learning rate of optimizers, see detail usages of the parameters in the documentation of PyTorch
                momentum=0.9,        # Momentum
                weight_decay=0.0001) # Weight decay of SGD
# Config used to build the optimizer hook, refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/optimizer.py#L8 for implementation details.
optimizer_config = dict(grad_clip=None)  # Most of the methods do not use gradient clip
# Learning rate scheduler config used to register LrUpdater hook
lr_config = dict(policy='step',          # The policy of scheduler, also support CosineAnnealing, Cyclic, etc. Refer to details of supported LrUpdater from https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py#L9.
                 step=[30, 60, 90])      # Steps to decay the learning rate
runner = dict(type='EpochBasedRunner',   # Type of runner to use (i.e. IterBasedRunner or EpochBasedRunner)
            max_epochs=100)    # Runner that runs the workflow in total max_epochs. For IterBasedRunner use `max_iters`








runtime setting

This part mainly includes saving the checkpoint strategy, log configuration, training parameters, breakpoint weight path, working directory, etc..

# Config to set the checkpoint hook, Refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/checkpoint.py for implementation.
checkpoint_config = dict(interval=1)    # The save interval is 1
# config to register logger hook
log_config = dict(
    interval=100,                       # Interval to print the log
    hooks=[
        dict(type='TextLoggerHook'),           # The Tensorboard logger is also supported
        # dict(type='TensorboardLoggerHook')
    ])

dist_params = dict(backend='nccl')   # Parameters to setup distributed training, the port can also be set.
log_level = 'INFO'             # The output level of the log.
resume_from = None             # Resume checkpoints from a given path, the training will be resumed from the epoch when the checkpoint's is saved.
workflow = [('train', 1)]      # Workflow for runner. [('train', 1)] means there is only one workflow and the workflow named 'train' is executed once.
work_dir = 'work_dir'          # Directory to save the model checkpoints and logs for the current experiments.
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Inherit and Modify Config File

For easy understanding, we recommend contributors to inherit from existing methods.

For all configs under the same folder, it is recommended to have only one primitive config. All other configs should inherit from the primitive config. In this way, the maximum of inheritance level is 3.

For example, if your config file is based on ResNet with some other modification, you can first inherit the basic ResNet structure, dataset and other training setting by specifying _base_ ='./resnet50_8xb32_in1k.py' (The path relative to your config file), and then modify the necessary parameters in the config file. A more specific example, now we want to use almost all configs in configs/resnet/resnet50_8xb32_in1k.py, but change the number of training epochs from 100 to 300, modify when to decay the learning rate, and modify the dataset path, you can create a new config file configs/resnet/resnet50_8xb32-300e_in1k.py with content as below:

_base_ = './resnet50_8xb32_in1k.py'

runner = dict(max_epochs=300)
lr_config = dict(step=[150, 200, 250])

data = dict(
    train=dict(data_prefix='mydata/imagenet/train'),
    val=dict(data_prefix='mydata/imagenet/train', ),
    test=dict(data_prefix='mydata/imagenet/train', )
)






Use intermediate variables in configs

Some intermediate variables are used in the configuration file. The intermediate variables make the configuration file clearer and easier to modify.

For example, train_pipeline / test_pipeline is the intermediate variable of the data pipeline. We first need to define train_pipeline / test_pipeline, and then pass them to data. If you want to modify the size of the input image during training and testing, you need to modify the intermediate variables of train_pipeline / test_pipeline.

img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='RandomResizedCrop', size=384, backend='pillow',),
    dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='ImageToTensor', keys=['img']),
    dict(type='ToTensor', keys=['gt_label']),
    dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='Resize', size=384, backend='pillow'),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='ImageToTensor', keys=['img']),
    dict(type='Collect', keys=['img'])
]
data = dict(
    train=dict(pipeline=train_pipeline),
    val=dict(pipeline=test_pipeline),
    test=dict(pipeline=test_pipeline))








Ignore some fields in the base configs

Sometimes, you need to set _delete_=True to ignore some domain content in the basic configuration file. You can refer to mmcv [https://mmcv.readthedocs.io/en/latest/understand_mmcv/config.html#inherit-from-base-config-with-ignored-fields] for more instructions.

The following is an example. If you wangt to use cosine schedule in the above ResNet50 case, just using inheritance and directly modify it will report get unexcepected keyword'step' error, because the 'step' field of the basic config in lr_config domain information is reserved, and you need to add _delete_ =True to ignore the content of lr_config related fields in the basic configuration file:

_base_ = '../../configs/resnet/resnet50_8xb32_in1k.py'

lr_config = dict(
    _delete_=True,
    policy='CosineAnnealing',
    min_lr=0,
    warmup='linear',
    by_epoch=True,
    warmup_iters=5,
    warmup_ratio=0.1
)








Use some fields in the base configs

Sometimes, you may refer to some fields in the _base_ config, so as to avoid duplication of definitions. You can refer to mmcv [https://mmcv.readthedocs.io/en/latest/understand_mmcv/config.html#reference-variables-from-base] for some more instructions.

The following is an example of using auto augment in the training data preprocessing pipeline， refer to configs/_base_/datasets/imagenet_bs64_autoaug.py [https://github.com/open-mmlab/mmclassification/blob/master/configs/_base_/datasets/imagenet_bs64_autoaug.py]. When defining train_pipeline, just add the definition file name of auto augment to _base_, and then use {{_base_.auto_increasing_policies}} to reference the variables:

_base_ = ['./pipelines/auto_aug.py']

# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='RandomResizedCrop', size=224),
    dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
    dict(type='AutoAugment', policies={{_base_.auto_increasing_policies}}),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='ImageToTensor', keys=['img']),
    dict(type='ToTensor', keys=['gt_label']),
    dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [...]
data = dict(
    samples_per_gpu=64,
    workers_per_gpu=2,
    train=dict(..., pipeline=train_pipeline),
    val=dict(..., pipeline=test_pipeline))
evaluation = dict(interval=1, metric='accuracy')
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Modify config through script arguments

When users use the script “tools/train.py” or “tools/test.py” to submit tasks or use some other tools, they can directly modify the content of the configuration file used by specifying the --cfg-options parameter.


	Update config keys of dict chains.

The config options can be specified following the order of the dict keys in the original config.
For example, --cfg-options model.backbone.norm_eval=False changes the all BN modules in model backbones to train mode.



	Update keys inside a list of configs.

Some config dicts are composed as a list in your config. For example, the training pipeline data.train.pipeline is normally a list
e.g. [dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), ...]. If you want to change 'flip_prob=0.5' to 'flip_prob=0.0' in the pipeline,
you may specify --cfg-options data.train.pipeline.1.flip_prob=0.0.



	Update values of list/tuples.

If the value to be updated is a list or a tuple. For example, the config file normally sets workflow=[('train', 1)]. If you want to
change this key, you may specify --cfg-options workflow="[(train,1),(val,1)]". Note that the quotation mark ” is necessary to
support list/tuple data types, and that NO white space is allowed inside the quotation marks in the specified value.








Import user-defined modules


Note

This part may only be used when using OpenMixup as a third party library to build your own project, and beginners can skip it.



After studying the follow-up tutorials ADDING NEW DATASET [https://mmclassification.readthedocs.io/en/latest/tutorials/new_dataset.html], CUSTOM DATA PIPELINES [https://mmclassification.readthedocs.io/en/latest/tutorials/data_pipeline.html], ADDING NEW MODULES [https://mmclassification.readthedocs.io/en/latest/tutorials/new_modules.html]. You may use MMClassification to complete your project and create new classes of datasets, models, data enhancements, etc. in the project. In order to streamline the code, you can use MMClassification as a third-party library, you just need to keep your own extra code and import your own custom module in the configuration files. For examples, you may refer to OpenMMLab Algorithm Competition Project [https://github.com/zhangrui-wolf/openmmlab-competition-2021] .

Add the following code to your own configuration files:

custom_imports = dict(
    imports=['your_dataset_class',
             'your_transforme_class',
             'your_model_class',
             'your_module_class'],
    allow_failed_imports=False)








FAQ


	None
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Tutorial 1: Adding New Dataset


Customize datasets by reorganizing data


Reorganize dataset to existing format

The simplest way is to convert your dataset to existing dataset formats (ImageNet).

For training, it differentiates classes by folders. The directory of training data is as follows:

imagenet
├── ...
├── train
│   ├── n01440764
│   │   ├── n01440764_10026.JPEG
│   │   ├── n01440764_10027.JPEG
│   │   ├── ...
│   ├── ...
│   ├── n15075141
│   │   ├── n15075141_999.JPEG
│   │   ├── n15075141_9993.JPEG
│   │   ├── ...





For validation, we provide a annotation list. Each line of the list contrains a filename and its corresponding ground-truth labels. The format is as follows:

ILSVRC2012_val_00000001.JPEG 65
ILSVRC2012_val_00000002.JPEG 970
ILSVRC2012_val_00000003.JPEG 230
ILSVRC2012_val_00000004.JPEG 809
ILSVRC2012_val_00000005.JPEG 516





Note: The value of ground-truth labels should fall in range [0, num_classes - 1].




An example of customized dataset

You can write a new Dataset class inherited from BaseDataset, and overwrite load_annotations(self),
like CIFAR10 [https://github.com/open-mmlab/mmclassification/blob/master/mmcls/datasets/cifar.py] and ImageNet [https://github.com/open-mmlab/mmclassification/blob/master/mmcls/datasets/imagenet.py].
Typically, this function returns a list, where each sample is a dict, containing necessary data information, e.g., img and gt_label.

Assume we are going to implement a Filelist dataset, which takes filelists for both training and testing. The format of annotation list is as follows:

000001.jpg 0
000002.jpg 1





We can create a new dataset in mmcls/datasets/filelist.py to load the data.

import mmcv
import numpy as np

from .builder import DATASETS
from .base_dataset import BaseDataset


@DATASETS.register_module()
class Filelist(BaseDataset):

    def load_annotations(self):
        assert isinstance(self.ann_file, str)

        data_infos = []
        with open(self.ann_file) as f:
            samples = [x.strip().split(' ') for x in f.readlines()]
            for filename, gt_label in samples:
                info = {'img_prefix': self.data_prefix}
                info['img_info'] = {'filename': filename}
                info['gt_label'] = np.array(gt_label, dtype=np.int64)
                data_infos.append(info)
            return data_infos






And add this dataset class in mmcls/datasets/__init__.py

from .base_dataset import BaseDataset
...
from .filelist import Filelist

__all__ = [
    'BaseDataset', ... ,'Filelist'
]





Then in the config, to use Filelist you can modify the config as the following

train = dict(
    type='Filelist',
    ann_file = 'image_list.txt',
    pipeline=train_pipeline
)










Customize datasets by mixing dataset

OpenMixup also supports to mix dataset for training. Currently it supports to concat and repeat datasets.


Repeat dataset

We use RepeatDataset as wrapper to repeat the dataset. For example, suppose the original dataset is Dataset_A, to repeat it, the config looks like the following

dataset_A_train = dict(
        type='RepeatDataset',
        times=N,
        dataset=dict(  # This is the original config of Dataset_A
            type='Dataset_A',
            ...
            pipeline=train_pipeline
        )
    )








Class balanced dataset

We use ClassBalancedDataset as wrapper to repeat the dataset based on category
frequency. The dataset to repeat needs to instantiate function self.get_cat_ids(idx)
to support ClassBalancedDataset.
For example, to repeat Dataset_A with oversample_thr=1e-3, the config looks like the following

dataset_A_train = dict(
        type='ClassBalancedDataset',
        oversample_thr=1e-3,
        dataset=dict(  # This is the original config of Dataset_A
            type='Dataset_A',
            ...
            pipeline=train_pipeline
        )
    )





You may refer to source code [https://github.com/open-mmlab/mmclassification/tree/master/mmcls/datasets/dataset_wrappers.py] for details.
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Tutorial 2: Custom Data Pipelines


Design of Data pipelines

Following typical conventions, we use Dataset and DataLoader for data loading
with multiple workers. Indexing Dataset returns a dict of data items corresponding to
the arguments of models forward method.

The data preparation pipeline and the dataset is decomposed. Usually a dataset
defines how to process the annotations and a data pipeline defines all the steps to prepare a data dict.
A pipeline consists of a sequence of operations. Each operation takes a dict as input and also output a dict for the next transform.

The operations are categorized into data loading, pre-processing and formatting.

Here is an pipeline example for ResNet-50 training on ImageNet.

img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='RandomResizedCrop', size=224),
    dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='ImageToTensor', keys=['img']),
    dict(type='ToTensor', keys=['gt_label']),
    dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='Resize', size=256),
    dict(type='CenterCrop', crop_size=224),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='ImageToTensor', keys=['img']),
    dict(type='Collect', keys=['img'])
]





For each operation, we list the related dict fields that are added/updated/removed.
At the end of the pipeline, we use Collect to only retain the necessary items for forward computation.


Data loading

LoadImageFromFile


	add: img, img_shape, ori_shape




By default, LoadImageFromFile loads images from disk but it may lead to IO bottleneck for efficient small models.
Various backends are supported by mmcv to accelerate this process. For example, if the training machines have setup
memcached [https://memcached.org/], we can revise the config as follows.

memcached_root = '/mnt/xxx/memcached_client/'
train_pipeline = [
    dict(
        type='LoadImageFromFile',
        file_client_args=dict(
            backend='memcached',
            server_list_cfg=osp.join(memcached_root, 'server_list.conf'),
            client_cfg=osp.join(memcached_root, 'client.conf'))),
]





More supported backends can be found in mmcv.fileio.FileClient [https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py].




Pre-processing

Resize


	add: scale, scale_idx, pad_shape, scale_factor, keep_ratio


	update: img, img_shape




RandomFlip


	add: flip, flip_direction


	update: img




RandomCrop


	update: img, pad_shape




Normalize


	add: img_norm_cfg


	update: img







Formatting

ToTensor


	update: specified by keys.




ImageToTensor


	update: specified by keys.




Collect


	remove: all other keys except for those specified by keys




(back to top)






Extend and use custom pipelines


	Write a new pipeline in any file, e.g., my_pipeline.py, and place it in
the folder mmcls/datasets/pipelines/. The pipeline class needs to override
the __call__ method which takes a dict as input and returns a dict.

from mmcls.datasets import PIPELINES

@PIPELINES.register_module()
class MyTransform(object):

    def __call__(self, results):
        # apply transforms on results['img']
        return results







	Import the new class in mmcls/datasets/pipelines/__init__.py.

...
from .my_pipeline import MyTransform

__all__ = [
    ..., 'MyTransform'
]







	Use it in config files.

img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='RandomResizedCrop', size=224),
    dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
    dict(type='MyTransform'),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='ImageToTensor', keys=['img']),
    dict(type='ToTensor', keys=['gt_label']),
    dict(type='Collect', keys=['img', 'gt_label'])
]












Pipeline visualization

After designing data pipelines, you can use the visualization tools to view the performance.
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Tutorial 4: Customize Schedule

In this tutorial, we will introduce some methods about how to construct optimizers, customize learning rate and momentum schedules, parameter-wise finely configuration, gradient clipping, gradient accumulation, and customize self-implemented methods for the project.



	Tutorial 4: Customize Schedule


	Customize optimizer supported by PyTorch


	Customize learning rate schedules


	Learning rate decay


	Warmup strategy






	Customize momentum schedules


	Parameter-wise finely configuration


	Gradient clipping and gradient accumulation


	Gradient clipping


	Gradient accumulation






	Customize self-implemented methods


	Customize self-implemented optimizer


	1. Define a new optimizer


	2. Add the optimizer to registry


	3. Specify the optimizer in the config file






	Customize optimizer constructor














Customize optimizer supported by PyTorch

We already support to use all the optimizers implemented by PyTorch, and to use and modify them, please change the optimizer field of config files.

For example, if you want to use SGD, the modification could be as the following.

optimizer = dict(type='SGD', lr=0.0003, weight_decay=0.0001)





To modify the learning rate of the model, just modify the lr in the config of optimizer.
You can also directly set other arguments according to the API doc [https://pytorch.org/docs/stable/optim.html?highlight=optim#module-torch.optim] of PyTorch.

For example, if you want to use Adam with the setting like torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False) in PyTorch,
the config should looks like.

optimizer = dict(type='Adam', lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)








Customize learning rate schedules


Learning rate decay

Learning rate decay is widely used to improve performance. And to use learning rate decay, please set the lr_confg field in config files.

For example, we use step policy as the default learning rate decay policy of ResNet, and the config is:

lr_config = dict(policy='step', step=[100, 150])





Then during training, the program will call StepLRHook [https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/lr_updater.py#L153] periodically to update the learning rate.

We also support many other learning rate schedules here [https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py], such as CosineAnnealing and Poly schedule. Here are some examples


	ConsineAnnealing schedule:

lr_config = dict(
    policy='CosineAnnealing',
    warmup='linear',
    warmup_iters=1000,
    warmup_ratio=1.0 / 10,
    min_lr_ratio=1e-5)







	Poly schedule:

lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)












Warmup strategy

In the early stage, training is easy to be volatile, and warmup is a technique
to reduce volatility. With warmup, the learning rate will increase gradually
from a minor value to the expected value.

In OpenMixup, we use lr_config to configure the warmup strategy, the main parameters are as follows：


	warmup: The warmup curve type. Please choose one from ‘constant’, ‘linear’, ‘exp’ and None, and None means disable warmup.


	warmup_by_epoch : if warmup by epoch or not, default to be True, if set to be False, warmup by iter.


	warmup_iters : the number of warm-up iterations, when warmup_by_epoch=True, the unit is epoch; when warmup_by_epoch=False, the unit is the number of iterations (iter).


	warmup_ratio : warm-up initial learning rate will calculate as lr = lr * warmup_ratio。




Here are some examples


	linear & warmup by iter

lr_config = dict(
    policy='CosineAnnealing',
    by_epoch=False,
    min_lr_ratio=1e-2,
    warmup='linear',
    warmup_ratio=1e-3,
    warmup_iters=20 * 1252,
    warmup_by_epoch=False)







	exp & warmup by epoch

lr_config = dict(
    policy='CosineAnnealing',
    min_lr=0,
    warmup='exp',
    warmup_iters=5,
    warmup_ratio=0.1,
    warmup_by_epoch=True)










Tip

After completing your configuration file，you could use learning rate visualization tool [https://mmclassification.readthedocs.io/en/latest/tools/visualization.html#learning-rate-schedule-visualization] to draw the corresponding learning rate adjustment curve.
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Customize momentum schedules

We support the momentum scheduler to modify the model’s momentum according to learning rate, which could make the model converge in a faster way.

Momentum scheduler is usually used with LR scheduler, for example, the following config is used to accelerate convergence.
For more details, please refer to the implementation of CyclicLrUpdater [https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/lr_updater.py#L327]
and CyclicMomentumUpdater [https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/momentum_updater.py#L130].

Here is an example

lr_config = dict(
    policy='cyclic',
    target_ratio=(10, 1e-4),
    cyclic_times=1,
    step_ratio_up=0.4,
)
momentum_config = dict(
    policy='cyclic',
    target_ratio=(0.85 / 0.95, 1),
    cyclic_times=1,
    step_ratio_up=0.4,
)








Parameter-wise finely configuration

Some models may have some parameter-specific settings for optimization, for example, no weight decay to the BatchNorm layer or using different learning rates for different network layers.
To finely configuration them, we can use the paramwise_cfg option in optimizer.

We provide some examples here and more usages refer to DefaultOptimizerConstructor [https://mmcv.readthedocs.io/en/latest/_modules/mmcv/runner/optimizer/default_constructor.html#DefaultOptimizerConstructor].


	Using specified options

The DefaultOptimizerConstructor provides options including bias_lr_mult, bias_decay_mult, norm_decay_mult, dwconv_decay_mult, dcn_offset_lr_mult and bypass_duplicate to configure special optimizer behaviors of bias, normalization, depth-wise convolution, deformable convolution and duplicated parameter. E.g:


	No weight decay to the BatchNorm layer




optimizer = dict(
    type='SGD',
    lr=0.8,
    weight_decay=1e-4,
    paramwise_cfg=dict(norm_decay_mult=0.))







	Using custom_keys dict

MMClassification can use custom_keys to specify different parameters to use different learning rates or weight decays, for example:


	No weight decay for specific parameters




paramwise_cfg = dict(
    custom_keys={
        'backbone.cls_token': dict(decay_mult=0.0),
        'backbone.pos_embed': dict(decay_mult=0.0)
    })

optimizer = dict(
    type='SGD',
    lr=0.8,
    weight_decay=1e-4,
    paramwise_cfg=paramwise_cfg)






	Using a smaller learning rate and a weight decay for the backbone layers




optimizer = dict(
    type='SGD',
    lr=0.8,
    weight_decay=1e-4,
    # 'lr' for backbone and 'weight_decay' are 0.1 * lr and 0.9 * weight_decay
    paramwise_cfg=dict(
        custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=0.9)}))
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Gradient clipping and gradient accumulation

Besides the basic function of PyTorch optimizers, we also provide some enhancement functions, such as gradient clipping, gradient accumulation, etc., refer to MMCV [https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/optimizer.py].


Gradient clipping

During the training process, the loss function may get close to a cliffy region and cause gradient explosion. And gradient clipping is helpful to stabilize the training process. More introduction can be found in this page [https://paperswithcode.com/method/gradient-clipping].

Currently we support grad_clip option in optimizer_config, and the arguments refer to PyTorch Documentation [https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html].

Here is an example:

optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# norm_type: type of the used p-norm, here norm_type is 2.





When inheriting from base and modifying configs, if grad_clip=None in base, _delete_=True is needed. For more details about _delete_ you can refer to TUTORIAL 1: LEARN ABOUT CONFIGS [https://mmclassification.readthedocs.io/en/latest/tutorials/config.html#ignore-some-fields-in-the-base-configs]. For example,

_base_ = [./_base_/schedules/imagenet_bs256_coslr.py]

optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2), _delete_=True, type='OptimizerHook')
# you can ignore type if type is 'OptimizerHook', otherwise you must add "type='xxxxxOptimizerHook'" here








Gradient accumulation

When computing resources are lacking, the batch size can only be set to a small value, which may affect the performance of models. Gradient accumulation can be used to solve this problem.

Here is an example:

data = dict(samples_per_gpu=64)
optimizer_config = dict(type="GradientCumulativeOptimizerHook", cumulative_iters=4)





Indicates that during training, back-propagation is performed every 4 iters. And the above is equivalent to:

data = dict(samples_per_gpu=256)
optimizer_config = dict(type="OptimizerHook")






Note

When the optimizer hook type is not specified in optimizer_config, OptimizerHook is used by default.
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Customize self-implemented methods

In academic research and industrial practice, it may be necessary to use optimization methods not implemented by MMClassification, and you can add them through the following methods.


Note

This part will modify the MMClassification source code or add code to the MMClassification framework, beginners can skip it.




Customize self-implemented optimizer


1. Define a new optimizer

A customized optimizer could be defined as below.

Assume you want to add an optimizer named MyOptimizer, which has arguments a, b, and c.
You need to create a new directory named mmcls/core/optimizer.
And then implement the new optimizer in a file, e.g., in mmcls/core/optimizer/my_optimizer.py:

from mmcv.runner import OPTIMIZERS
from torch.optim import Optimizer


@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):

    def __init__(self, a, b, c):









2. Add the optimizer to registry

To find the above module defined above, this module should be imported into the main namespace at first. There are two ways to achieve it.


	Modify mmcls/core/optimizer/__init__.py to import it into optimizer package, and then modify mmcls/core/__init__.py to import the new optimizer package.

Create the mmcls/core/optimizer folder and the mmcls/core/optimizer/__init__.py file if they don’t exist. The newly defined module should be imported in mmcls/core/optimizer/__init__.py and mmcls/core/__init__.py so that the registry will find the new module and add it:





# In mmcls/core/optimizer/__init__.py
from .my_optimizer import MyOptimizer # MyOptimizer maybe other class name

__all__ = ['MyOptimizer']





# In mmcls/core/__init__.py
...
from .optimizer import *  # noqa: F401, F403






	Use custom_imports in the config to manually import it




custom_imports = dict(imports=['mmcls.core.optimizer.my_optimizer'], allow_failed_imports=False)





The module mmcls.core.optimizer.my_optimizer will be imported at the beginning of the program and the class MyOptimizer is then automatically registered.
Note that only the package containing the class MyOptimizer should be imported. mmcls.core.optimizer.my_optimizer.MyOptimizer cannot be imported directly.




3. Specify the optimizer in the config file

Then you can use MyOptimizer in optimizer field of config files.
In the configs, the optimizers are defined by the field optimizer like the following:

optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)





To use your own optimizer, the field can be changed to

optimizer = dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value)










Customize optimizer constructor

Some models may have some parameter-specific settings for optimization, e.g. weight decay for BatchNorm layers.

Although our DefaultOptimizerConstructor is powerful, it may still not cover your need. If that, you can do those fine-grained parameter tuning through customizing optimizer constructor.

from mmcv.runner.optimizer import OPTIMIZER_BUILDERS


@OPTIMIZER_BUILDERS.register_module()
class MyOptimizerConstructor:

    def __init__(self, optimizer_cfg, paramwise_cfg=None):
        pass

    def __call__(self, model):
        ...      # Construct your optimzier here.
        return my_optimizer





The default optimizer constructor is implemented here [https://github.com/open-mmlab/mmcv/blob/9ecd6b0d5ff9d2172c49a182eaa669e9f27bb8e7/mmcv/runner/optimizer/default_constructor.py#L11], which could also serve as a template for new optimizer constructor.
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Tutorial 5: Customize Runtime Settings

In this tutorial, we will introduce some methods about how to customize workflow and hooks when running your own settings for the project.



	Tutorial 5: Customize Runtime Settings


	Customize Workflow


	Hooks


	default training hooks


	CheckpointHook


	LoggerHooks


	EvalHook






	Use other implemented hooks






	Customize self-implemented hooks


	1. Implement a new hook


	2. Register the new hook


	3. Modify the config






	FAQ


	1. resume_from and load_from and init_cfg.Pretrained














Customize Workflow

Workflow is a list of (phase, duration) to specify the running order and duration. The meaning of “duration” depends on the runner’s type.

For example, we use epoch-based runner by default, and the “duration” means how many epochs the phase to be executed in a cycle. Usually,
we only want to execute training phase, just use the following config.

workflow = [('train', 1)]





Sometimes we may want to check some metrics (e.g. loss, accuracy) about the model on the validate set.
In such case, we can set the workflow as

[('train', 1), ('val', 1)]





so that 1 epoch for training and 1 epoch for validation will be run iteratively.

By default, we recommend using EvalHook to do evaluation after the training epoch, but you can still use val workflow as an alternative.


Note


	The parameters of model will not be updated during the val epoch.


	Keyword max_epochs in the config only controls the number of training epochs and will not affect the validation workflow.


	Workflows [('train', 1), ('val', 1)] and [('train', 1)] will not change the behavior of EvalHook because EvalHook is called by after_train_epoch and validation workflow only affect hooks that are called through after_val_epoch.
Therefore, the only difference between [('train', 1), ('val', 1)] and [('train', 1)] is that the runner will calculate losses on the validation set after each training epoch.
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Hooks

The hook mechanism is widely used in the OpenMMLab open-source algorithm library. Combined with the Runner, the entire life cycle of the training process can be managed easily. You can learn more about the hook through related article [https://www.calltutors.com/blog/what-is-hook/].

Hooks only work after being registered into the runner. At present, hooks are mainly divided into two categories:


	default training hooks




The default training hooks are registered by the runner by default. Generally, they are hooks for some basic functions, and have a certain priority, you don’t need to modify the priority.


	custom hooks




The custom hooks are registered through custom_hooks. Generally, they are hooks with enhanced functions. The priority needs to be specified in the configuration file. If you do not specify the priority of the hook, it will be set to ‘NORMAL’ by default.

Priority list




	Level
	Value





	HIGHEST
	0



	VERY_HIGH
	10



	HIGH
	30



	ABOVE_NORMAL
	40



	NORMAL(default)
	50



	BELOW_NORMAL
	60



	LOW
	70



	VERY_LOW
	90



	LOWEST
	100





The priority determines the execution order of the hooks. Before training, the log will print out the execution order of the hooks at each stage to facilitate debugging.


default training hooks

Some common hooks are not registered through custom_hooks, they are




	Hooks
	Priority





	LrUpdaterHook
	VERY_HIGH (10)



	MomentumUpdaterHook
	HIGH (30)



	OptimizerHook
	ABOVE_NORMAL (40)



	CheckpointHook
	NORMAL (50)



	IterTimerHook
	LOW (70)



	EvalHook
	LOW (70)



	LoggerHook(s)
	VERY_LOW (90)





OptimizerHook, MomentumUpdaterHook and LrUpdaterHook have been introduced in sehedule strategy.
IterTimerHook is used to record elapsed time and does not support modification.

Here we reveal how to customize CheckpointHook, LoggerHooks, and EvalHook.


CheckpointHook

The MMCV runner will use checkpoint_config to initialize CheckpointHook [https://github.com/open-mmlab/mmcv/blob/9ecd6b0d5ff9d2172c49a182eaa669e9f27bb8e7/mmcv/runner/hooks/checkpoint.py].

checkpoint_config = dict(interval=1)





We could set max_keep_ckpts to save only a small number of checkpoints or decide whether to store state dict of optimizer by save_optimizer.
More details of the arguments are here [https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.CheckpointHook]




LoggerHooks

The log_config wraps multiple logger hooks and enables to set intervals. Now MMCV supports TextLoggerHook, WandbLoggerHook, MlflowLoggerHook, NeptuneLoggerHook, DvcliveLoggerHook and TensorboardLoggerHook.
The detailed usages can be found in the doc [https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.LoggerHook].

log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        dict(type='TensorboardLoggerHook')
    ])








EvalHook

The config of evaluation will be used to initialize the EvalHook [https://github.com/open-mmlab/mmclassification/blob/master/mmcls/core/evaluation/eval_hooks.py].

The EvalHook has some reserved keys, such as interval, save_best and start, and the other arguments such as metrics will be passed to the dataset.evaluate()

evaluation = dict(interval=1, metric='accuracy', metric_options={'topk': (1, )})





You can save the model weight when the best verification result is obtained by modifying the parameter save_best:

# "auto" means automatically select the metrics to compare.
# You can also use a specific key like "accuracy_top-1".
evaluation = dict(interval=1, save_best="auto", metric='accuracy', metric_options={'topk': (1, )})





When running some large experiments, you can skip the validation step at the beginning of training by modifying the parameter start as below:

evaluation = dict(interval=1, start=200, metric='accuracy', metric_options={'topk': (1, )})





This indicates that, before the 200th epoch, evaluations would not be executed. Since the 200th epoch, evaluations would be executed after the training process.


Note

In the default configuration files of OpenMixup, the evaluation field is generally placed in the datasets configs.








Use other implemented hooks

Some hooks have been already implemented in MMCV and OpenMixup, they are:


	EMAHook [https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/ema.py]


	SyncBuffersHook [https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/sync_buffer.py]


	EmptyCacheHook [https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/memory.py]


	ProfilerHook [https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/profiler.py]


	……




If the hook is already implemented in MMCV, you can directly modify the config to use the hook as below

mmcv_hooks = [
    dict(type='MMCVHook', a=a_value, b=b_value, priority='NORMAL')
]





such as using EMAHook, interval is 100 iters:

custom_hooks = [
    dict(type='EMAHook', interval=100, priority='HIGH')
]





(back to top)






Customize self-implemented hooks


1. Implement a new hook

Here we give an example of creating a new hook in OpenMixup and using it in training.

from mmcv.runner import HOOKS, Hook


@HOOKS.register_module()
class MyHook(Hook):

    def __init__(self, a, b):
        pass

    def before_run(self, runner):
        pass

    def after_run(self, runner):
        pass

    def before_epoch(self, runner):
        pass

    def after_epoch(self, runner):
        pass

    def before_iter(self, runner):
        pass

    def after_iter(self, runner):
        pass





Depending on the functionality of the hook, the users need to specify what the hook will do at each stage of the training in before_run, after_run, before_epoch, after_epoch, before_iter, and after_iter.




2. Register the new hook

Then we need to make MyHook imported. Assuming the file is in mmcls/core/utils/my_hook.py there are two ways to do that:


	Modify mmcls/core/utils/__init__.py to import it.

The newly defined module should be imported in mmcls/core/utils/__init__.py so that the registry will
find the new module and add it:





from .my_hook import MyHook






	Use custom_imports in the config to manually import it




custom_imports = dict(imports=['mmcls.core.utils.my_hook'], allow_failed_imports=False)








3. Modify the config

custom_hooks = [
    dict(type='MyHook', a=a_value, b=b_value)
]





You can also set the priority of the hook as below:

custom_hooks = [
    dict(type='MyHook', a=a_value, b=b_value, priority='ABOVE_NORMAL')
]





By default, the hook’s priority is set as NORMAL during registration.






FAQ


1. resume_from and load_from and init_cfg.Pretrained


	load_from : only imports model weights, which is mainly used to load pre-trained or trained models;


	resume_from : not only import model weights, but also optimizer information, current epoch information, mainly used to continue training from the checkpoint.


	init_cfg.Pretrained : Load weights during weight initialization, and you can specify which module to load. This is usually used when fine-tuning a model, refer to Tutorial 2: Fine-tune Models.
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SSL Downstream Tasks: Classification

The benchmarks of downstream tasks are based on MMSelfSup [https://github.com/open-mmlab/mmselfsup]. We provide many benchmarks to evaluate models on following downstream tasks. Here are comprehensive tutorials and examples to explain how to run all benchmarks with OpenMixup.


	SSL Downstream Tasks: Classification


	ImageNet Linear Evaluation


	ImageNet Finetune Evaluation


	ImageNet Semi-Supervised Classification


	ImageNet Nearest-Neighbor Classification


	VOC SVM / Low-shot SVM








First, you are supposed to extract your backbone weights by tools/model_converters/extract_backbone_weights.py

python tools/model_converters/extract_backbone_weights.py {CHECKPOINT} {MODEL_FILE}





Arguments:


	CHECKPOINT: the checkpoint file of a selfsup method named as epoch_*.pth.


	MODEL_FILE: the output backbone weights file. If not mentioned, the PRETRAIN below uses this extracted model file.





ImageNet Linear Evaluation

The linear evaluation is one of the most general benchmarks for contrastive learning pre-training, we integrate several papers’ config settings, also including multi-head linear evaluation. We write classification model in our own codebase for the multi-head function, thus, to run linear evaluation, we still use .sh script to launch training. The supported datasets are ImageNet, Places205, iNaturalist18, and CIFAR-10/100.

# distributed version
bash benchmarks/classification/dist_train_linear.sh ${CONFIG} ${PRETRAIN}

# slurm version
bash benchmarks/classification/srun_train_linear.sh ${PARTITION} ${JOB_NAME} ${CONFIG} ${PRETRAIN}





Remarks:


	The default GPU number is 8. When changing GPUS, please also change imgs_per_gpu in the config file accordingly to ensure the total batch size (e.g., 256).


	CONFIG: Use config files under configs/benchmarks/classification/. Specifically, imagenet (excluding imagenet_*percent folders), places205, inaturalist2018, and CIFAR-10/100 are supported.


	PRETRAIN: the pre-trained model file (the backbone parameters only).




Example:

bash benchmarks/classification/dist_train_linear.sh \
configs/benchmarks/classification/imagenet/r50_linear_sz224_4xb64_step_ep100.py \
work_dir/pretrained_model.pth
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ImageNet Finetune Evaluation

The fully finetuning evaluation is the popular benchmark for masked image modeling pre-training, we integrate several papers’ config settings and use .sh script to launch training. The supported datasets are ImageNet and CIFAR-10/100.

# distributed version
bash benchmarks/classification/dist_train_ft_8gpu.sh ${CONFIG} ${PRETRAIN}

# slurm version
bash benchmarks/classification/srun_train_ft.sh ${PARTITION} ${JOB_NAME} ${CONFIG} ${PRETRAIN}





Remarks:


	The default GPU number is 8. When changing GPUS, please also change imgs_per_gpu in the config file accordingly to ensure the total batch size.


	CONFIG: Use config files under configs/benchmarks/classification/. Specifically, imagenet .


	PRETRAIN: the pre-trained model file (the backbone parameters only).




Example:

bash benchmarks/classification/dist_train_ft_4gpu.sh \
configs/benchmarks/classification/imagenet/r50_rsb_a3_ft_sz160_4xb512_cos_fp16_ep100.py \
work_dir/pretrained_model.pth
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ImageNet Semi-Supervised Classification

To run ImageNet semi-supervised classification, we still use .sh script as Linear Evaluation and Fine-tuning to launch training.

# distributed version
bash tools/benchmarks/classification/dist_train_semi.sh ${CONFIG} ${PRETRAIN}

# slurm version
bash tools/benchmarks/classification/slurm_train_semi.sh ${PARTITION} ${JOB_NAME} ${CONFIG} ${PRETRAIN}





Remarks:


	The default GPU number is 4.


	CONFIG: Use config files under configs/benchmarks/classification/imagenet/, named imagenet_*percent folders.


	PRETRAIN: the pre-trained model file (the backbone parameters only).
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ImageNet Nearest-Neighbor Classification

Only support CNN-style backbones (like ResNet50). To evaluate the pre-trained models using the nearest-neighbor benchmark, you can run command below.

# distributed version
bash benchmarks/classification/knn_imagenet/dist_test_knn_pretrain.sh ${SELFSUP_CONFIG} ${PRETRAIN}

# slurm version
bash tools/benchmarks/classification/knn_imagenet/slurm_test_knn_pretrain.sh ${PARTITION} ${JOB_NAME} ${SELFSUP_CONFIG} ${PRETRAIN}





Besides, if you want to evaluate the ckpt files saved by runner, you can run command below.

# distributed version
bash tools/benchmarks/classification/knn_imagenet/dist_test_knn_epoch.sh ${SELFSUP_CONFIG} ${EPOCH}

# slurm version
bash tools/benchmarks/classification/knn_imagenet/slurm_test_knn_epoch.sh ${PARTITION} ${JOB_NAME} ${SELFSUP_CONFIG} ${EPOCH}





To test with ckpt, the code uses the epoch_*.pth file, there is no need to extract weights.

Remarks:


	${SELFSUP_CONFIG} is the config file of the self-supervised experiment.


	PRETRAIN: the pre-trained model file.


	if you want to change GPU numbers, you could add GPUS_PER_NODE=4 GPUS=4 at the beginning of the command.


	EPOCH is the epoch number of the ckpt that you want to test
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VOC SVM / Low-shot SVM

To run these benchmarks, you should first prepare your VOC datasets. Please refer to prepare_data.md [https://github.com/open-mmlab/mmselfsup/blob/master/docs/en/prepare_data.md] for the details of data preparation.

To evaluate the pre-trained models, you can run command below.

# distributed version
bash tools/benchmarks/classification/svm_voc07/dist_test_svm_pretrain.sh ${SELFSUP_CONFIG} ${GPUS} ${PRETRAIN} ${FEATURE_LIST}

# slurm version
bash tools/benchmarks/classification/svm_voc07/slurm_test_svm_pretrain.sh ${PARTITION} ${JOB_NAME} ${SELFSUP_CONFIG} ${PRETRAIN} ${FEATURE_LIST}





Besides, if you want to evaluate the ckpt files saved by runner, you can run command below.

# distributed version
bash tools/benchmarks/classification/svm_voc07/dist_test_svm_epoch.sh ${SELFSUP_CONFIG} ${EPOCH} ${FEATURE_LIST}

# slurm version
bash tools/benchmarks/classification/svm_voc07/slurm_test_svm_epoch.sh ${PARTITION} ${JOB_NAME} ${SELFSUP_CONFIG} ${EPOCH} ${FEATURE_LIST}





To test with ckpt, the code uses the epoch_*.pth file, there is no need to extract weights.

Remarks:


	${SELFSUP_CONFIG} is the config file of the self-supervised experiment.


	${FEATURE_LIST} is a string to specify features from layer1 to layer5 to evaluate; e.g., if you want to evaluate layer5 only, then FEATURE_LIST is “feat5”, if you want to evaluate all features, then FEATURE_LIST is “feat1 feat2 feat3 feat4 feat5” (separated by space). If left empty, the default FEATURE_LIST is “feat5”.


	PRETRAIN: the pre-trained model file.


	if you want to change GPU numbers, you could add GPUS_PER_NODE=4 GPUS=4 at the beginning of the command.


	EPOCH is the epoch number of the ckpt that you want to test
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Detection


	Detection


	MMDetection


	Evaluation






	Detectron2


	Evaluation













MMDetection

Here, we prefer to use MMDetection to do the detection task. First, make sure you have installed MIM [https://github.com/open-mmlab/mim], which is also a project of OpenMMLab.

pip install openmim
mim install mmdet





It is very easy to install the package.

Besides, please refer to MMDet for installation [https://github.com/open-mmlab/mmdetection/blob/master/docs/en/get_started.md] and data preparation [https://github.com/open-mmlab/mmdetection/blob/master/docs/en/1_exist_data_model.md]


Evaluation

After installing MMDet, you can run MMDetection with simple command. We provide scripts for the stage-4 only (C4) and FPN setting of object detection models.

# distributed version
bash benchmarks/mmdetection/mim_dist_train_c4.sh ${CONFIG} ${PRETRAIN} ${GPUS}
bash benchmarks/mmdetection/mim_dist_train.sh ${CONFIG} ${PRETRAIN} ${GPUS}

# slurm version
bash benchmarks/mmdetection/mim_slurm_train_c4.sh ${PARTITION} ${CONFIG} ${PRETRAIN}
bash benchmarks/mmdetection/mim_slurm_train.sh ${PARTITION} ${CONFIG} ${PRETRAIN}





Remarks:


	CONFIG: Use config files under configs/benchmarks/mmdetection/ or write your own config files


	PRETRAIN: the pre-trained model file (the backbone parameters only).


	${GPUS}: The number of GPUs that you want to use to train. We adopt 8 GPUs for detection tasks by default.


	Since repositories of OpenMMLab have support referring config files across different repositories, we can easily leverage the configs from MMDetection like:




_base_ = 'mmdet::mask_rcnn/mask-rcnn_r50-caffe-c4_1x_coco.py'





Example:

bash ./tools/benchmarks/mmdetection/mim_dist_train_c4.sh \
configs/benchmarks/mmdetection/coco/mask-rcnn_r50-c4_ms-1x_coco.py \
https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.pth 8










Detectron2

If you want to do detection task with detectron2 [https://github.com/facebookresearch/detectron2], we also provide some config files.
Please refer to INSTALL.md [https://github.com/facebookresearch/detectron2/blob/main/INSTALL.md] for installation and follow the directory structure [https://github.com/facebookresearch/detectron2/tree/main/datasets] to prepare your datasets required by detectron2.

conda activate detectron2 # use detectron2 environment here, otherwise use open-mmlab environment
cd tools/benchmarks/detectron2
python convert-pretrain-to-detectron2.py ${WEIGHT_FILE} ${OUTPUT_FILE} # must use .pkl as the output extension.
bash run.sh ${DET_CFG} ${OUTPUT_FILE}
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Evaluation

After training, you can also run the command below with 8 GPUs (per node) to test your model.

# distributed version
bash benchmarks/mmdetection/mim_dist_test.sh ${CONFIG} ${CHECKPOINT}

# slurm version
bash benchmarks/mmdetection/slurm_run.sh ${PARTITION} ${CONFIG} ${CHECKPOINT}





Remarks:


	${CHECKPOINT}: The well-trained detection model that you want to test.
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Segmentation


	Segmentation


	Train


	Test








For semantic segmentation task, we use MMSegmentation. First, make sure you have installed MIM [https://github.com/open-mmlab/mim], which is also a project of OpenMMLab.

pip install openmim
mim install mmsegmentation





It is very easy to install the package.

Besides, please refer to MMSegmentation for installation [https://github.com/open-mmlab/mmsegmentation/blob/master/docs/get_started.md] and data preparation [https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#prepare-datasets].


Train

After installation, you can run MMSeg with simple command.

# distributed version
bash benchmarks/mmsegmentation/mim_dist_train.sh ${CONFIG} ${PRETRAIN} ${GPUS}

# slurm version
bash benchmarks/mmsegmentation/mim_slurm_train.sh ${PARTITION} ${CONFIG} ${PRETRAIN}





Remarks:


	CONFIG: Use config files under configs/benchmarks/mmsegmentation/ or write your own config files


	PRETRAIN: the pre-trained model file (the backbone parameters only).


	${GPUS}: The number of GPUs that you want to use to train. We adopt 4 GPUs for segmentation tasks by default.




Example:

bash benchmarks/mmsegmentation/mim_dist_train.sh \
configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py \
https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.pth 4
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Test

After training, you can also run the command below to test your model.

# distributed version
bash benchmarks/mmsegmentation/mim_dist_test.sh ${CONFIG} ${CHECKPOINT} ${GPUS}

# slurm version
bash benchmarks/mmsegmentation/mim_slurm_test.sh ${PARTITION} ${CONFIG} ${CHECKPOINT}





Remarks:


	${CHECKPOINT}: The trained segmentation model that you want to test.




Example:

bash ./tools/benchmarks/mmsegmentation/mim_dist_test.sh \
configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py \
work_dir/segmentation_model.pth 4
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Model Zoo of Supervised Learning

Some of the current results of supervised learning benchmarks are based on MMClassification [https://github.com/open-mmlab/mmselfsup]. We will rerun the experiments and update more reliable results soon!

Note


	We summarize benchmark results in Markdown tables. You can convert them into other formats (e.g., LaTeX) with online tools [https://www.tablesgenerator.com/markdown_tables].


	Models with * are converted from the corresponding official repos, others are trained by ourselves.


	For MogaNet [https://arxiv.org/abs/2211.03295] [config [https://github.com/Westlake-AI/openmixup/tree/main/configs/classification/imagenet/moganet/]], * denotes the refined training setting of lightweight models with 3-Augment [https://arxiv.org/abs/2204.07118].
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Model Zoo

Current results of self-supervised learning benchmarks are based on MMSelfSup [https://github.com/open-mmlab/mmselfsup] and solo-learn [https://github.com/vturrisi/solo-learn]. We will rerun the experiments and update more reliable results soon!
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Model Zoo of Semi-supervised Learning

Since mixup variants are often applied in semi-supervised scenarios, OpenMixup also provides semi-supervised and transfer learning benchmarks on scale-scale datasets. Configs, experiments results, training logs will be updated as soon as possible.

Coming soon!
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Analysis


	Analysis


	Log Analysis


	Plot Curves


	Calculate Training Time






	Model Complexity


	Get the FLOPs and params (experimental)






	FAQs









Log Analysis


Plot Curves

tools/analysis_tools/analyze_logs.py plots curves of given keys according to the log files.
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Pytorch to ONNX (Experimental)


	Pytorch to ONNX (Experimental)


	How to convert models from Pytorch to ONNX


	Prerequisite


	Usage


	Description of all arguments:






	How to evaluate ONNX models with ONNX Runtime


	Prerequisite


	Usage


	Description of all arguments






	Reminders


	FAQs









How to convert models from Pytorch to ONNX


Prerequisite


	Please refer to install [https://mmclassification.readthedocs.io/en/latest/install.html#install-mmclassification] for installation of MMClassification.


	Install onnx, onnxsim (optional for --simplify), and onnxruntime.




pip install onnx onnxsim onnxruntime==1.5.1








Usage

python tools/deployment/pytorch2onnx.py \
    ${CONFIG_FILE} \
    --checkpoint ${CHECKPOINT_FILE} \
    --output-file ${OUTPUT_FILE} \
    --shape ${IMAGE_SHAPE} \
    --opset-version ${OPSET_VERSION} \
    --dynamic-export \
    --simplify \
    --verify \








Description of all arguments:


	config : The path of a model config file.


	--checkpoint : The path of a model checkpoint file.


	--output-file: The path of output ONNX model. If not specified, it will be set to tmp.onnx.


	--shape: The height and width of input tensor to the model. If not specified, it will be set to 224 224.


	--opset-version : The opset version of ONNX. If not specified, it will be set to 11.


	--dynamic-export : Determines whether to export ONNX with dynamic input shape and output shapes. If not specified, it will be set to False.


	--simplify: Determines whether to simplify the exported ONNX model. If not specified, it will be set to False.


	--verify: Determines whether to verify the correctness of an exported model. If not specified, it will be set to False.




Example:

python tools/deployment/pytorch2onnx.py \
    configs/classification/imagenet/mixups/basic/r18_mixups_CE_none_4xb64.py \
    --checkpoint ${PATH_TO_MODEL}/r18_mixups_CE_none_4xb64.pth \
    --output-file ${PATH_TO_MODEL}/r18_mixups_CE_none_4xb64.onnx \
    --dynamic-export \
    --simplify \
    --verify \
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How to evaluate ONNX models with ONNX Runtime

We prepare a tool tools/deployment/test.py to evaluate ONNX models with ONNXRuntime or TensorRT.


Prerequisite


	Install onnx and onnxruntime-gpu accordingt to instructions [https://onnxruntime.ai/] for ONNXRuntime.

pip install onnx onnxruntime-gpu







	Install tensorrt according to PyTorch instructions [https://pytorch.org/TensorRT/getting_started/installation.html#installation] for TensorRT evaluations.







Usage

python tools/deployment/test.py \
    ${CONFIG_FILE} \
    ${ONNX_FILE} \
    --backend ${BACKEND} \
    --out ${OUTPUT_FILE} \
    --metrics ${EVALUATION_METRICS} \
    --metric-options ${EVALUATION_OPTIONS} \
    --show
    --show-dir ${SHOW_DIRECTORY} \
    --cfg-options ${CFG_OPTIONS} \








Description of all arguments


	config_file: The path of a model config file.


	onnx_file: The path of a ONNX model file.


	--backend: Backend for input model to run and should be onnxruntime or tensorrt.


	--out: The path of output result file in pickle format (e.g., .pkl).


	--metrics: Evaluation metrics, which depends on the dataset, e.g., “accuracy”, “precision”, “recall”, “f1_score”, “support” for single label dataset.


	--metrics-options: Custom options for evaluation, the key-value pair in xxx=yyy format will be kwargs for dataset.evaluate() function.


	--show: Determines whether to show classifier outputs. If not specified, it will be set to False.


	--show-dir: Directory where painted images will be saved.


	--cfg-options: Override some settings in the used config file, the key-value pair in xxx=yyy format will be merged into config file.




Example:

python tools/deployment/test.py \
    configs/classification/imagenet/mixups/basic/r18_mixups_CE_none_4xb64.py \
    ${PATH_TO_MODEL}/r18_mixups_CE_none_4xb64.onnx \
    --backend onnxruntime \
    --out ${PATH_TO_MODEL}/out.pkl \
    --show-dir ${SHOW_DIRECTORY} \
    --metrics accuracy










Reminders


	If you meet any problem with the listed models above, please create an issue and it would be taken care of soon. For models not included in the list, please try to dig a little deeper and debug a little bit more and hopefully solve them by yourself.







FAQs


	None
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Pytorch to TorchScript (Experimental)


	Pytorch to TorchScript (Experimental)


	How to convert models from Pytorch to TorchScript


	Usage


	Description of all arguments






	Reminders


	FAQs









How to convert models from Pytorch to TorchScript


Usage

python tools/deployment/pytorch2torchscript.py \
    ${CONFIG_FILE} \
    --checkpoint ${CHECKPOINT_FILE} \
    --output-file ${OUTPUT_FILE} \
    --shape ${IMAGE_SHAPE} \
    --verify \








Description of all arguments


	config : The path of a model config file.


	--checkpoint : The path of a model checkpoint file.


	--output-file: The path of output TorchScript model. If not specified, it will be set to tmp.pt.


	--shape: The height and width of input tensor to the model. If not specified, it will be set to 224 224.


	--verify: Determines whether to verify the correctness of an exported model. If not specified, it will be set to False.




Example:

python tools/deployment/pytorch2torchscript.py \
    configs/classification/imagenet/mixups/basic/r18_mixups_CE_none_4xb64.py \
    --checkpoint ${PATH_TO_MODEL}/r18_mixups_CE_none_4xb64.pth \
    --output-file ${PATH_TO_MODEL}/r18_mixups_CE_none_4xb64.pt \
    --verify \





Notes:


	We have tested the most models with Pytorch==1.10.0*.









Reminders


	For torch.jit.is_tracing() is only supported after v1.6. For users with pytorch v1.3-v1.5, we suggest early returning tensors manually.


	If you meet any problem with the models in this repo, please create an issue and it would be taken care of soon.







FAQs


	None
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Visualization


	Visualization


	Learning Rate Schedule Visualization


	Class Activation Map Visualization


	Loss Landscape Visualization


	FAQs









Learning Rate Schedule Visualization

python tools/visualizations/vis_lr.py \
    ${CONFIG_FILE} \
    --dataset-size ${DATASET_SIZE} \
    --ngpus ${NUM_GPUs}
    --save-path ${SAVE_PATH} \
    --title ${TITLE} \
    --style ${STYLE} \
    --window-size ${WINDOW_SIZE}
    --cfg-options





Description of all arguments：


	config :  The path of a model config file.


	dataset-size : The size of the datasets. If set，build_dataset will be skipped and ${DATASET_SIZE} will be used as the size. Default to use the function build_dataset.


	ngpus : The number of GPUs used in training, default to be 1.


	save-path : The learning rate curve plot save path, default not to save.


	title : Title of figure. If not set, default to be config file name.


	style : Style of plt. If not set, default to be whitegrid.


	window-size: The shape of the display window. If not specified, it will be set to 12*7. If used, it must be in the format 'W*H'.


	cfg-options : Modifications to the configuration file, refer to Tutorial 1: Learn about Configs [https://openmixup.readthedocs.io/en/latest/tutorials/0_config.html].





Note

Loading annotations maybe consume much time, you can directly specify the size of the dataset with dataset-size to save time.



Examples：

python tools/visualizations/vis_lr.py configs/classification/imagenet/resnet/resnet50_4xb64_step_ep100.py





When using ImageNet, directly specify the size of ImageNet, as below:

python tools/visualizations/vis_lr.py configs/classification/imagenet/resnet/resnet50_4xb64_step_ep100.py --dataset-size 1281167 --ngpus 4 --save-path ./resnet50_4xb64_step_ep100.jpg
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Class Activation Map Visualization

OpenMixup provides tools\visualizations\vis_cam.py tool to visualize class activation map. Please use pip install "grad-cam>=1.3.6" command to install pytorch-grad-cam [https://github.com/jacobgil/pytorch-grad-cam]. The implementation is modified according to MMClassification [https://github.com/open-mmlab/mmclassification] (thanks to their contributions).

The supported methods are as follows:




	Method
	What it does





	GradCAM
	Weight the 2D activations by the average gradient



	GradCAM++
	Like GradCAM but uses second order gradients



	XGradCAM
	Like GradCAM but scale the gradients by the normalized activations



	EigenCAM
	Takes the first principle component of the 2D Activations (no class discrimination, but seems to give great results)



	EigenGradCAM
	Like EigenCAM but with class discrimination: First principle component of Activations*Grad. Looks like GradCAM, but cleaner



	LayerCAM
	Spatially weight the activations by positive gradients. Works better especially in lower layers





Command：

python tools/visualizations/vis_cam.py \
    ${IMG} \
    ${CONFIG_FILE} \
    ${CHECKPOINT} \
    [--target-layers ${TARGET-LAYERS}] \
    [--preview-model] \
    [--method ${METHOD}] \
    [--target-category ${TARGET-CATEGORY}] \
    [--save-path ${SAVE_PATH}] \
    [--vit-like] \
    [--num-extra-tokens ${NUM-EXTRA-TOKENS}]
    [--aug_smooth] \
    [--eigen_smooth] \
    [--device ${DEVICE}] \
    [--cfg-options ${CFG-OPTIONS}]





Description of all arguments：


	img : The target picture path.


	config : The path of the model config file.


	checkpoint : The path of the checkpoint.


	--target-layers : The target layers to get activation maps, one or more network layers can be specified. If not set, use the norm layer of the last block.


	--preview-model : Whether to print all network layer names in the model.


	--method : Visualization method, supports GradCAM, GradCAM++, XGradCAM, EigenCAM, EigenGradCAM, LayerCAM, which is case insensitive. Defaults to GradCAM.


	--target-category : Target category, if not set, use the category detected by the given model.


	--save-path : The path to save the CAM visualization image. If not set, the CAM image will not be saved.


	--vit-like : Whether the network is ViT-like network.


	--num-extra-tokens : The number of extra tokens in ViT-like backbones. If not set, use num_extra_tokens the backbone.


	--aug_smooth : Whether to use TTA(Test Time Augment) to get CAM.


	--eigen_smooth : Whether to use the principal component to reduce noise.


	--device : The computing device used. Default to ‘cpu’.


	--cfg-options : Modifications to the configuration file, refer to Tutorial 1: Learn about Configs [https://openmixup.readthedocs.io/en/latest/tutorials/0_config.html].





Note

The argument --preview-model can view all network layers names in the given model. It will be helpful if you know nothing about the model layers when setting --target-layers.



Examples(CNN)：

Here are some examples of target-layers in ResNet-50, which can be any module or layer:


	'backbone.layer4' means the output of the forth ResLayer.


	'backbone.layer4.2' means the output of the third BottleNeck block in the forth ResLayer.


	'backbone.layer4.2.conv1' means the output of the conv1 layer in above BottleNeck block.





Note

For ModuleList or Sequential, you can also use the index to specify which sub-module is the target layer.

For example, the backbone.layer4[-1] is the same as backbone.layer4.2 since layer4 is a Sequential with three sub-modules.




	Use different methods to visualize CAM for ResNet50, the target-category is the predicted result by the given checkpoint, using the default target-layers.

python tools/visualizations/vis_cam.py \
    demo/bird.JPEG \
    configs/classification/imagenet/resnet/resnet50_4xb64_step_ep100.py \
    https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_imagenet_20200708-cfb998bf.pth \
    --method GradCAM
    # GradCAM++, XGradCAM, EigenCAM, EigenGradCAM, LayerCAM












	Image
	GradCAM
	GradCAM++
	EigenGradCAM
	LayerCAM
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Mixup ImageNet Benchmarks

OpenMixup provides mixup benchmarks on supervised learning on various tasks. Config files and experiment results are available, and pre-trained models and training logs are updating. Moreover, more advanced mixup variants will be supported in the future. Issues and PRs are welcome!

Now, we have supported 13 popular mixup methods! Notice that * denotes open-source arXiv pre-prints reproduced by us, and 📖 denotes original results reproduced by official implementations. We modified the original AttentiveMix by using pre-trained R-18 (or R-50) and sampling $\lambda$ from $\Beta(\alpha,8)$ as AttentiveMix+, which yields better performances.

Note


	We summarize benchmark results in Markdown tables. You can convert them into other formats (e.g., LaTeX) with online tools [https://www.tablesgenerator.com/markdown_tables].


	As for evaluation, you can test pre-trained models with tools/dist_test.sh, and then you can extract experiment results (from JSON files) by tools in openmixup/tools/summary/. An example with 4 GPUs evaluation and summarization is as follows:

CUDA_VISIBLE_DEVICES=1,2,3,4 bash tools/dist_test.sh ${CONFIG_FILE} 4 ${PATH_TO_MODEL}
python tools/summary/find_val_max_3times_average.py ${PATH_TO_JSON_LOG} head0_top1-head0_top5
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Mixup CIFAR-10/100 Benchmarks

OpenMixup provides mixup benchmarks on supervised learning on various tasks. Config files and experiment results are available, and pre-trained models and training logs are updating. Moreover, more advanced mixup variants will be supported in the future. Issues and PRs are welcome!

Now, we have supported 13 popular mixup methods! Notice that * denotes open-source arXiv pre-prints reproduced by us, and 📖 denotes original results reproduced by official implementations. We modified the original AttentiveMix by using pre-trained R-18 (or R-50) and sampling $\lambda$ from $\Beta(\alpha,8)$ as AttentiveMix+, which yields better performances.

Note


	We summarize benchmark results in Markdown tables. You can convert them into other formats (e.g., LaTeX) with online tools [https://www.tablesgenerator.com/markdown_tables].


	As for evaluation, you can test pre-trained models with tools/dist_test.sh, and then you can extract experiment results (from JSON files) by tools in openmixup/tools/summary/. An example with 4 GPUs evaluation and summarization is as follows:

CUDA_VISIBLE_DEVICES=1,2,3,4 bash tools/dist_test.sh ${CONFIG_FILE} 4 ${PATH_TO_MODEL}
python tools/summary/find_val_max_3times_average.py ${PATH_TO_JSON_LOG} head0_top1-head0_top5
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Mixup Fine-grained and Scenic Classification Benchmarks

OpenMixup provides mixup benchmarks on supervised learning on various tasks. Config files and experiment results are available, and pre-trained models and training logs are updating. Moreover, more advanced mixup variants will be supported in the future. Issues and PRs are welcome!

Now, we have supported 13 popular mixup methods! Notice that * denotes open-source arXiv pre-prints reproduced by us, and 📖 denotes original results reproduced by official implementations. We modified the original AttentiveMix by using pre-trained R-18 (or R-50) and sampling $\lambda$ from $\Beta(\alpha,8)$ as AttentiveMix+, which yields better performances.

Note


	We summarize benchmark results in Markdown tables. You can convert them into other formats (e.g., LaTeX) with online tools [https://www.tablesgenerator.com/markdown_tables].


	As for evaluation, you can test pre-trained models with tools/dist_test.sh, and then you can extract experiment results (from JSON files) by tools in openmixup/tools/summary/. An example with 4 GPUs evaluation and summarization is as follows:

CUDA_VISIBLE_DEVICES=1,2,3,4 bash tools/dist_test.sh ${CONFIG_FILE} 4 ${PATH_TO_MODEL}
python tools/summary/find_val_max_3times_average.py ${PATH_TO_JSON_LOG} head0_top1-head0_top5
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Awesome Mixup Methods for Supervised Learning
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We summarize fundamental mixup methods proposed for supervised visual representation learning from two aspects: sample mixup policy and label mixup policy. Then, we summarize mixup techniques used in downstream tasks.
The list of awesome mixup methods is summarized in chronological order and is on updating. And we will add more papers according to Awesome-Mix [https://github.com/ChengtaiCao/Awesome-Mix].


	To find related papers and their relationships, check out Connected Papers [https://www.connectedpapers.com/], which visualizes the academic field in a graph representation.


	To export BibTeX citations of papers, check out ArXiv [https://arxiv.org/] or Semantic Scholar [https://www.semanticscholar.org/] of the paper for professional reference formats.
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Sample Mixup Methods


Pre-defined Policies


	mixup: Beyond Empirical Risk Minimization
Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz
ICLR’2018 [Paper [https://arxiv.org/abs/1710.09412]]
[Code [https://github.com/facebookresearch/mixup-cifar10]]
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Awesome Mixup Methods for Self- and Semi-supervised Learning
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We summarize mixup methods proposed for self- and semi-supervised visual representation learning.
We are working on a survey of mixup methods. The list is on updating.


	To find related papers and their relationships, check out Connected Papers [https://www.connectedpapers.com/], which visualizes the academic field in a graph representation.


	To export BibTeX citations of papers, check out ArXiv [https://arxiv.org/] or Semantic Scholar [https://www.semanticscholar.org/] of the paper for professional reference formats.
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Mixup for Self-supervised Learning


	MixCo: Mix-up Contrastive Learning for Visual Representation
Sungnyun Kim, Gihun Lee, Sangmin Bae, Se-Young Yun
NIPSW’2020 [Paper [https://arxiv.org/abs/2010.06300]]
[Code [https://github.com/Lee-Gihun/MixCo-Mixup-Contrast]]
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Awesome Masked Image Modeling for Visual Represention

[image: PRs Welcome] [image: Awesome] [https://awesome.re] [image: GitHub stars] [image: GitHub forks]

We summarize masked image modeling (MIM) methods proposed for self-supervised visual representation learning.
The list of awesome MIM methods is summarized in chronological order and is on updating.


	To find related papers and their relationships, check out Connected Papers [https://www.connectedpapers.com/], which visualizes the academic field in a graph representation.


	To export BibTeX citations of papers, check out ArXiv [https://arxiv.org/] or Semantic Scholar [https://www.semanticscholar.org/] of the paper for professional reference formats.
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